Q	.P.	Code: 19ME0305	KI	9
R	eg.	No:		
		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTT	UR	
		(AUTONOMOUS) B. Tash H. Vaar I. Samastar Supplementary Examinations December 2021		
		5.1een 11 Year 1 Semester Supplementary Examinations December 2021 FNGINFFRING THERMODYNAMICS		
		(Agricultural Engineering)		
Т	ime	e: 3 hours Max.	Marks	s: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)		
		UNIT-I		
1	a	Show that heat and work is a path function and not a property of the system.	L1	6M
	b	What is quasistatic process along with its features?	L2	6M
		OR		
2	a	Explain about thermodynamics equilibrium.	L1	6M
	b	Explain the differences between open system and closed system.	L2	6M
		UNIT-II		
3	a	Explain reversible and irreversible process.	L1	6M
	b	State the second law of thermodynamics clearly.	L1	6M
		OR	12	
4	a	During a cycle consisting of four processes, the heat transfers are as following.	L3	6M
		Q1 = +60KJ, $Q2 = -40$ KJ, $Q3 = 15$ KJ, and $Q4 = -20$ KJ, Determine the net work		
	h	The bout the best engine in detailed manner	τ1	6M
	D	UNIT-III		UIVI
5	a	State Avogadro's law.	L1	6M
	b	State the ideal gas equation clearly.	L1	6M
	t	OR		
6	a	One kg of air in a closed system, initially at 5°C and occupying 0.3m ³ volumes,	L3	6M
		undergoes a constant pressure heating process to 100°C. There is no work other		
		than pdv work. Find (i) the work done during the process, (ii) the heat transferred,		
		and (iii) the entropy change of the gas.		
	b	Draw P -V and T-S diagrams on Isochoric process and Isobaric process with	L2	6M
		derive the (i) work done (ii) heat transfer (iii) internal energy.		
		UNIT-IV		
7	a	Air in a closed stationary system expands in a reversible adiabatic process from 0.5	L3	6M
		MPa, 15°C to 0.2 MPa. Find the final temperature, and per kg of air, the heat		
		transferred, and the work done.		
	b	Explain Limitations of Carnot cycle.	L2	6M
		OR	1.0	CRA
8	a	Explain the P-V, P-T, T-S diagrams of Pure Substances	L2	6M
	b	Derive an expression for thermal efficiency & mean effective pressure of a dual	L2	OIVI
		combustion cycle by drawing PV and 1S diagrams.		

er er som er som at som det er som att store att som at I som att som at

一、「自動自己在設備者」にも必須必須によ

And And And Angel Mark

Debide B0 = Star A debilition (Chippen) A is

1.1.9 / 1

is him subject on the solution of the second se